JZ participated in the design of the study and revised manuscript. JS participated in the design 4EGI-1 molecular weight of the experiment, performed the analysis, and organized the final version of the paper. All authors read and approved the final manuscript.”
“Background Silicon nano-wires (SiNWs) have attracted the attention of many researchers due to their structural, optical, electrical and thermoelectric properties. They are expected to be
important building blocks in the future nano-electronic and photonic devices including solar cells, field-effect transistors, memory devices and chemical and biomedical sensors. Owing to their compatibility with the Si-base technology, SiNWs can be used not only as the functional units of the devices but also as the interconnects [1–6]. Various methods have been reported for SiNW fabrication, including both bottom-up and top-down techniques. Bottom-up growth methods include laser ablation, evaporation, solution-based methods and chemical vapour deposition (CVD). The CVD growth Dinaciclib purchase usually takes place via vapour-liquid-solid (VLS) route [7]. Many catalyst materials, mainly metals including Au, Al, Ni, Fe and Ag, have been used for the SiNW growth [1, 8]. Among these metals, Au as catalyst has been the most popular and most widely investigated due to its chemical inertness and low eutectic temperature of Au-Si system. However, Au introduces deep impurity levels in Si bandgap
and degrades the charge carrier mobility [8]. Therefore, alternative catalyst investigation is of crucial 4��8C importance. One of the important parameters when considering the nano-wire fabrication process is the growth temperature, as this can determine the variety of substrates that could be used, especially when there is a prefabricated layer of some temperature-dependent material. The nano-wire growth temperature is determined by the eutectic temperature of the catalyst-precursor alloy [9]; thus,
the low-temperature growth will depend on the appropriate catalysts choice. Considering the characteristics of Ga, including the Ga/Si alloy low eutectic point of 29.774°C, wide temperature range for silicon solubility and its non-reactivity to form solid compound with silicon, Ga has been suggested as a good alternative to Au to grow SiNWs at low-temperatures. It is important to note that Ga does not act as catalyst for the decomposition of precursor gas as it does not assist the dissociation of SiH4 below its thermal decomposition point. Therefore, Ga acts only as a solvent, and the decomposition is achieved by plasma treatment (by the use of plasma-enhanced chemical vapour deposition (PECVD) system) [10]. In this study, Ga catalyst is used with an aim to grow SiNWs at a lowest temperature using PECVD technique. The growth temperature was varied between 100°C and 400°C. The grown nano-structures were characterised using scanning electron microscopy (SEM), Ultra Violet Visible spectroscopy (UV-Vis) and Raman spectroscopy.