The vector was then transformed into KRX E coli cells (Promega,

The vector was then transformed into KRX E. coli cells (Promega, UK). Expression, purification and crystallisation of CyanoQ Expression of His6-tagged CyanoQ was induced by the addition of 2 g/L of rhamnose, and cells were grown at 18 °C Androgen Receptor activity overnight. Cells were lysed with a sonicator (Sonics and Materials, CT, USA) in lysis buffer (50 mM Tris–HCl pH 7.9, 500 mM NaCl, 1 mM MgCl2) supplemented with one Complete Protease Inhibitor Cocktail-EDTA Tablet (Roche, UK) per 50 ml lysis buffer. Broken cells were spun down for 10 min at 4 °C at 18,000×g, and the supernatant was mixed with a Ni-iminodiacetic

acid resin (Generon, UK). Non-specifically bound proteins were removed by washing 3 times with wash buffer (20 mM Tris–HCl pH 7.9, 500 mM NaCl, 60 mM check details imidazole), and His6-CyanoQ was eluted with elution buffer (20 mM Tris–HCl pH 7.9, 500 mM NaCl, 1 M imidazole). Purified His6-CyanoQ was dialysed overnight against 20 mM Tris–HCl pH 7.9, 200 mM NaCl at 4 °C. The His-tag was removed by thrombin (GE Healthcare, UK) digestion at a ratio of 1 unit of thrombin per 100 µg of purified CyanoQ. Proteolysis was performed overnight at 4 °C and the digested sample was reloaded onto a nickel-iminodiacetic acid column. The flow-through containing CyanoQ without the His-tag was concentrated at 4 °C to around 10 mg/ml with a centrifugal concentrator device with a molecular weight

cut off (MWCO) of 3500 (Sartorius, Germany). Crystals appeared in hanging drop vapour diffusion, above 1.8 M ammonium sulphate, with PRIMA-1MET molecular weight drops of protein solution and an equal volume of mother liquor. Crystals were cryoprotected in the mother-liquor solution with 30 % (v/v) glycerol, then flash-cooled in liquid nitrogen. Protein

structure determination Data were integrated and scaled with MOSFLM (Leslie and Powell 2007) and programmes of the CCP4 suite (Winn et al. 2011). 5 % of reflections were set aside as the Free set for cross-validation. The structure was solved by molecular replacement using the CyanoQ structure from Synechocystis (Jackson et al. 2010). The model was truncated using Chainsaw (Stein 2008) mode, and used as a model in PHASER (McCoy et click here al. 2007). The structure was refined in REFMAC (Murshudov et al. 2011) with cycles of manual model-building in COOT (Emsley and Cowtan 2004). Validation was performed using the MolProbity server (Davis et al. 2007). The atomic model and structure factors have been deposited in the PDB under accession number 3ZSU. Sequence alignment and structural conservation The full protein sequence of CyanoQ (Tll2057) from T. elongatus was searched against cyanobacterial genomes using BLAST (Altschul et al. 1990) having gapless chromosome assembly level on NCBI. Sequences were aligned in ClustalW2 and analysed by Prosite (De Castro et al. 2006). Isolation of PSII complexes from T.

Comments are closed.