2X NB with appropriate selection. Cultures for minimal inhibitory concentration (MIC) determination were diluted 1:1000 in 3 ml of 0.1X NB for chromate cultures or mXBM plus glucose for divalent cationic metals in borosilicate glass tubes and maintained at 30°C with shaking at 200 rpm. The OD600 was measured daily for a period of 3 days until growth stabilized. Divalent cationic metals used in MIC experiments were added as
lead nitrate (Pb(NO3)2, zinc chloride (ZnCl2), or cadmium sulfate (CdSO4) at concentrations ranging from 0 to 200 μM. Cultures were prepared in triplicate for each selleck chemical growth or MIC experiment. D11 transformants were screened for chromate resistance by streaking single colonies onto 0.1X nutrient agar plates containing 0, 0.5, 1, 2, or 5 mM chromate. Sequence analysis of putative chromate efflux gene The genome sequence is available in the GenBank database under accession numbers NC_008537 to NC_008539 and NC_008541. The genome was sequenced by the Department of Energy Joint Genome Initiative 3-Methyladenine chemical structure (DOE-JGI) and can
be accessed at http://genome.jgi-psf.org/finished_microbes/art_f/art_f.home.html.
The annotated sequence at this site was used for locating the CRD and construction of primer sequences. Amino acid Multiple sequence alignment of Arth_4248 (ChrA) with other described and putative members of the CHR family of chromate efflux proteins [24] was performed using the ClustalX program and default setting for Gonnet series for protein weight Selleckchem Entinostat matrix [51] and bootstrap Neighbor Joining tree options with 1000 resamplings. Output trees were visualized in Fig Tree http://tree.bio.ed.ac.uk/software/figtree/. Sequences were retrieved from the UniProt database [52] by conducting a search for ChrA sequences according to Diaz-Perez et al [22]. Some additional eukaryotic sequences were found by conducting a similar search of the GenBank database [53]. All short ChrA (SCHR) sequences (<350 amino acids) were excluded from the alignment. A total of 513 sequences (Additional files 1 and 2) were retrieved and aligned. Transmembrane helices were predicted using the TMHMM 2.0 server [54].