Coliforms were isolated from stools of colicky infants and charac

Coliforms were isolated from stools of colicky infants and characterized taxonomically and for gas production. They were #selleckchem randurls[1|1|,|CHEM1|]# all gas-producing strains and were attributed to 6 different species. The taxonomic identification of the isolated strains and their relative percentage within the coliform group confirmed the results obtained in a previous study, being E. coli the most represented species [17]. Two of the 27 lactic

acid bacteria assayed in this study, L. delbrueckii subsp.delbrueckii DSM 20074 and L. plantarum MB 456, were able to inhibit the growth of gas-forming coliforms belonging to the different species isolated from colicky infants. The extent of the inhibitory activity was similar for Thiazovivin all the coliforms assayed (Table 4), although it was higher for the DSM 20074 strain with respect to the other one. Moreover, the capability of the DSM 20074 strain of hindering the growth of coliforms was also observed in a liquid co-culturing assay. Therefore,

this strain appears to be a good candidate to relieve symptoms caused by gas-producing coliforms in colicky infants. The antagonistic activity of the two Lactobacillus strains was only evidenced when harvested cells were applied, whereas the neutralized culture supernatants did not exert any activity on the same coliforms (Figure 1). The inhibitory activity of lactic acid bacteria has generally been ascribed

to two mechanisms, which can often coexist: i) the production of bacteriocins or bacteriocin-like molecules, which are very often secreted outside the cell [28, 29] and ii) the production of inhibitory non proteinaceous metabolites such as organic PTK6 acids, carbon dioxide, ethanol, hydrogen peroxide and diacetyl, whose anti-microbial action is well known [30]. In addition, Alakomi et al. reported that lactic acid can permeabilize the membrane of Gram negative bacteria by a mechanism of outer membrane disruption [31]. In the case of the two lactic acid bacteria showing inhibitory activity against coliforms in this work, this activity is linked to the presence of the whole cells, although it is not possible to exclude that putative inhibitory molecules are present in the supernatants at such a low concentration that their activity cannot be detected by the assay employed. Therefore, it is not possible to clearly ascribe the inhibitory activity to a defined group of molecules and further studies are necessary to characterize the exact mechanism of inhibition. Conclusions In conclusion, this study confirmed the presence of a greater amount of coliforms in colicky infants with respect to the controls, mainly belonging to the E. coli species. L. delbrueckii subsp.

Comments are closed.