Interestingly, we also observed that invasive ability of SMMC-772

Interestingly, we also observed that invasive ability of SMMC-7721 cells pretreated with VEGF was significantly enhanced. These results clearly indicated that VEGF-induced expression of CXCR7 in HCC cells was functional. Because VEGF is a secreted mitogen and plays a key role in regulating tumor angiogenesis

[34], we can assume that under pathological conditions such as cancer, CXCR7 may be up-regulated by VEGF and that CXCR7, in turn, might exert an angiogenic effect increasing VEGF production through the CXCL12/CXCR7 axis. Previous reports have demonstrated that CXCR7 plays an important role in tumor growth [4, 19, 24]. However, the data from Meijie et al. [29] have shown no effect of CXCR7 on tumor growth and metastasis was observed. One possible explanation might be that the different effects of CXCR7 AMN-107 ic50 on tumor growth and metastasis may be dependent on cell type. To further

confirm our in vitro findings, we have explored the role of CXCR7 in tumor growth in SMMC-7721 xenograft mouse tumor model. In the present study, RNAi-mediated inhibition of CXCR7 partially suppressed HCC tumor growth in nude mice. Tumor angiogenesis is essential for both cancer growth and lethal metastatic cancer spread [35]. To investigate potential mechanisms underlying the CXCR7 silencing-mediated reduction in tumor growth, we examined the expression of gene (CD31) regulating angiogenesis in the tumors of mice. We found that inhibition of CXCR7 resulted in reduction in MVD. Thus, it is reasonable to speculate that inhibition of angiogenesis may lead to a significant delay in tumor growth. We did not observe that cancer cells spontaneously metastasize to other organs, Glycogen branching enzyme such as lung, liver and spleen. Also, tumor metastasis was not affected after knockdown of CXCR7 expression in HCC cells. One possible reason is that SMMC-7721 cells are unable to metastasize to other organs by subcutaneous tansplantation

in mice. Thus, we can not conclude that expression of CXCR7 do not affect tumor metastasis in vivo. Orthotopic implantation of HCC cells should be used to further evaluate the role of CXCR7 in regulating tumor metastasis. The above findings imply that CXCL12/CXCR7 interaction may regulate multiple processes in HCC invasion and tumor growth. First, CXCR7 could affect CXCL12 induced tumor cell adhesion to ECM. Second, CXCR7 could regulate HCC invasive ability through angiogenesis and VEGF secretion. Third, up-regulation of CXCR7 expression by VEGF stimulation could enhance the invasive ability of cancer cells. Thus, we provide mechanistic evidence that CXCL12/CXCR7 interaction may affect HCC progression by multiple mechanisms including adhesion, invasion, angiogenesis, VEGF production and tumor growth. Because CXCR4 is also a INCB28060 receptor for CXCL12, we can not exclude the possibility that CXCR4 may be involved in regulating these biological behaviors triggered by CXCR7.

Comments are closed.