Mol Microbiol 1991,5(8):2053–2062.PubMedCrossRef 5. Plumbridge J, Vimr E: Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and STA-9090 nmr N-acetylneuraminic acid by Escherichia coli . J
Bacteriol 1999,181(1):47–54.PubMed 6. Brinkkötter A, Kloss H, Alpert CA, Lengeler JW: Pathways for the utilization of N-acetyl-galactosamine and galactosamine in Escherichia coli . Mol Microbiol 2000,37(1):125–135.PubMedCrossRef 7. Kundig W, Ghosh S, Roseman S: Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system. Proc Natl Acad Sci USA 1964,52(4):1067–1074.PubMedCrossRef Selleck Entinostat 8. Postma PW, Lengeler JW, Jacobson GR: Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiol Rev 1993,57(3):543–594.PubMed 9. Ezquerro-Sáenz C, Ferrero MA, Revilla-Nuin B, López Velasco FF, Martinez-Blanco H, Rodríguez-Aparicio LB: Transport of N-acetyl-D-galactosamine in Escherichia coli K92: effect on acetyl-aminosugar metabolism and polysialic acid production. Biochimie 2006,88(1):95–102.PubMedCrossRef
10. Brinkkötter A, Shakeri-Garakani A, Lengeler JW: Two class II D-tagatose-bisphosphate aldolases from enteric bacteria. Arch Microbiol 2002,177(5):410–419.PubMedCrossRef 11. Ray WK, Larson TJ: Application of AgaR repressor and dominant repressor variants for verification of a gene BAY 80-6946 cluster involved in N-acetylgalactosamine metabolism in Escherichia coli K-12. Mol Microbiol 2004,51(3):813–816.PubMedCrossRef 12. Mukherjee A, Mammel MK, LeClerc JE, Cebula TA: Altered utilization of N-acetyl-D-galactosamine by Escherichia coli O157:H7 from the 2006 spinach outbreak. J Bacteriol 2008,190(5):1710–1717.PubMedCrossRef 13. Bochner BR, Gadzinski RP, Panomitros E: Phenotypic microarrays for high throughput phenotypic testing and assay of gene function. Genome Res 2001,11(7):1246–1255.PubMedCrossRef
14. Souza JM, Plumbridge JA, Calcagno ML: N-acetylglucosamine-6-phosphate deacetylase from Escherichia coli : purification and molecular and kinetic characterization. Nintedanib (BIBF 1120) Arch Biochem Biophys 1997,340(2):338–346.PubMedCrossRef 15. Belin D: Why are suppressors of amber mutations so frequent among Escherichia coli K12 strains? : a plausible explanation for a long-lasting puzzle. Genetics 2003,165(2):455–456.PubMed 16. Calcagno M, Campos PJ, Mulliert G, Suástegui J: Purification, molecular and kinetic properties of glucosamine-6-phosphate isomerase (deaminase) from Escherichia coli . Biochim Biophys Acta 1984,787(2):165–173.PubMedCrossRef 17. Midelfort CF, Rose IA: Studies on the mechanism of Escherichia coli glucosamine-6-phosphate isomerase. Biochemistry 1977,16(8):1590–1596.PubMedCrossRef 18. Oliva G, Fontes MR, Garratt RC, Altamirano MM, Calcagno ML, Horjales E: Structure and Catalytic mechanism of glucosamine-6-phosphate deaminase from Escherichia coli at 2.1 Å resolution.