The only exception to such a “pecking order” on MMA is not in chi

The only exception to such a “pecking order” on MMA is not in chimeras but in colony interactions: if M or F (plus helper) get a chance to establish a colony, they take control over the in-growing E. coli in a way similar to that on NAG (Figure 9b). Discussion We present here a simple system allowing study

of bacterial development in two regimes of growth – germ free (axenic), or gnotobiotic. As mentioned in the Introduction, we draw inspiration from attempts to selleckchem reduce extreme complexity of multispecies cohabitations from experiments with germ-free multicellular eukaryotes (mostly animals, or humans with inborn defects of immunity, but also plants) or gnotobiotic organisms where such a complexity was reduced Sapitinib to an interaction of two, or small number, of players. Germ-free development Formation of multicellular bodies is facultative in bacteria: they easily survive and multiply without multicellularity, thus they can abound with much richer repertoire of creativity, without endangering further propagation of the lineage. Bacterial colonies,

selleck screening library then, may provide some cues to the nature of multicellularity. Moreover, growth of a colony is a complex process specific for a given lineage, and specifically modulated by environmental conditions (neighbors, nutrients, spatial settings, an array of signals, etc.). We chose five easily distinguishable morphotypes belonging to two Serratia species; the sixth, “outgroup”, morphotype check was a domesticated strain of E. coli. It deserves a notice that our morphotypes seem to resist domestification, i.e. gradual loss of structural refinements when grown under laboratory conditions commonly observed in microorganisms [1, 31]. What also deserves a comment is the fact that the way of initiating a colony has little, if any, effect on the resulting body building. The same pattern can be grown from a single cell, from big amount (millions) of cells planted to a limited area as a dense homogenous suspension,

or even from a chunk of material from the donor colony. Provided the area of planting is small, the cells can coordinate their behavior, “make wise decisions and act upon them“(B. McClintock, The Nobel lecture, 1983). Regulatory embryos of metazoans provide another example of such a potential. With our array of easily distinguishable morphotypes, we were able to proceed from “germ-free” colonies towards gnotobiotic colony interactions – either with conspecifics, or with heterospecific bodies. We believe that such arrangement may provide a promising tool for future study of microbial communication at the level of structured entities. Similarly, study of chimerical bodies introduced in our works may reveal rules controlling self-structuration of the bacterial body and/or multispecies community. Moreover, our hypothesis of two-phase formation of multicellular body (e.g.

Comments are closed.