The result displayed the intercalated solid molecular hydrogen in graphane-like nanofibers (17 wt.% H2). Compared with the US Department of Energy (DOE)’s strategic objectives for the year 2015 which include a minimum ‘gravimetric’ capacity (weight of stored H2/system weight) of 9.0 wt.% of reversible hydrogen and a ‘volumetric’ capacity
(density) of 0.081 g(H2)/cm3(system), graphane-like nanofibers are much more acceptable and efficient hydrogen storage technology. Gharekhanlou et al. [97] reported that graphane materials PD98059 mw can be used as bipolar transistor. Cudazzo et al. [98] provided an exact analytic form of the two-dimensional screened potential. Gharekhanlou et al. [99] introduced a 2D p-n junction based on graphane with hydrogen deficiency to reduce the bandgap effectively. And using basic analysis
has shown that within the approximation of Shockley law of junctions, an exponential ideal I-V characteristic is expectable. This broadens the graphane or graphane-like application in transistor devices. Savini Y27632 et al. [100] used p-doped graphane to fabricate a prototype high-Tc electron–phonon superconductor, which has Tc as high as 150 K for a 1-nm nanowire, higher than copper oxides. Loktev and Turkowski [101] and Kristoffel and Rägo [102] considered the superconducting properties of multilayer graphane Ceramide glucosyltransferase by taking into account the fluctuations of the order parameter. The result showed
that in the single-layer case, the BKT critical temperature which corresponds to the vortex SC is equal to the MF temperature 100 K beginning from a rather low value of doping less than 0.01. And they estimated that the critical temperature may reach values 150 K, which is significantly higher than the maximal temperature under ambient pressure in cuprates. Nechaev [103] said that the high-density hydrogen carrier intercalation in graphane-like nanostructures can be used in fuel cell-powered vehicles. Hussian et al. [104, 105] used polylithiated (OLi2) functionalized graphane as a potential hydrogen storage material, the storage capacity to achieve 12.9 wt.%. Conclusions Exceptional physical properties, chemical tunability, potential electronic, and transistor applications of graphane have definitely gained the interest of materials and electronics researchers. This review article is intended to focus on the fabrication and structural features of graphane (or graphane-like material) and the potential applications of graphane (or graphane-like) and graphane-based nanocomposites.