We investigate the mechanism by which anionic lipid vesicles indu

We investigate the mechanism by which anionic lipid vesicles induce aggregation of tau in vitro using

K18, a fragment of tau corresponding to the four repeats of the microtubule binding domain. Our results show that aggregation occurs when the amount of K18 bound to the lipid bilayer exceeds a critical surface density. The ratio of protein/lipid at the critical aggregation concentration is pH-dependent, as is the binding affinity. At low pH, where the protein selleck compound binds with high affinity, the critical surface density is independent both of total lipid concentration as well as the fraction of anionic lipid present in the bilayer. Furthermore, the aggregates consist of both protein and vesicles and bind the beta-sheet specific dye, Thioflavin T, in the manner characteristic of pathological aggregates. Our results suggest that the lipid bilayer facilitates protein-protein interactions both by screening charges on the protein and by increasing the local protein concentration, resulting in rapid aggregation. Because anionic lipids are abundant in cellular membranes, these findings contribute to understanding tau-lipid bilayer interactions that may be relevant to disease pathology.”
“Interaction of hematopoietic progenitors with the thymic microenvironment induces them to proliferate, adopt the T lineage fate,

and asymmetrically PXD101 supplier diverge into multiple functional lineages. Progenitors at various developmental stages are stratified within the thymus, implying that the corresponding microenvironments provide distinct sets of signals to progenitors migrating between them. These differences remain largely undefined. Here we used physical and computational approaches to generate a comprehensive spatial map of stromal gene expression selleck products in the thymus. Although most stromal regions were characterized by a unique gene expression signature, the central cortex lacked distinctive features. Instead, a key function of this region appears to be the sequestration of unique microenvironments found at the

cortical extremities, thus modulating the relative proximity of progenitors moving between them. Our findings compel reexamination of how cell migration, lineage specification, and proliferation are controlled by thymic architecture and provide an in-depth resource for global characterization of this control.”
“Real-time RT-PCR is used to quantify individual influenza viral RNAs. However, conventional real-time RTPCR, using strand-specific primers, has been shown to produce not only the anticipated strand-specific products, but also substantial amounts of non-strand-specific products, indicating lack of specificity. Therefore, in this study, a novel strand-specific real-time RT-PCR method was established to quantify the three types of influenza viral RNA (vRNA, cRNA, and mRNA) separately. This method is based on reverse transcription using tagged primers to add a ‘tag’ sequence at the 5′ end and the hot-start method.

Comments are closed.