After drying, each sample was finely ground in a mortar, sieved,

After drying, each sample was finely ground in a mortar, sieved, homogenized and stored at −20°C until DNA extraction was performed. Soil DNA extraction A DNA extraction procedure was specifically developed

for all the four types of soil analysed in this study. Three replicates (5 g each) were prepared for each soil sample, re-suspended in 6–7 ml of CTAB lysis buffer (2% CTAB, 2% Polyvinylpyrrolidon, {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| 2 M NaCl, 20 mM EDTA, 100 mM Tris–HCl, pH 8) and processed according the detailed protocol described in Additional file 2. Brown crude DNA solutions (about 3 ml in volume) from each reaction were obtained following this extraction phase and 1 ml aliquots were then purified using the Nucleospin Plant II kit (Macherey-Nagel, Düren, Germany) following the manufacturer’s instructions with slight modifications (see Additional file 2). Total DNAs were finally

eluted in 65 μl of elution buffer (5 mM Tris/HCl, pH 8.5). The amount of DNA in each extract was quantified using a NanoDrop ND-1000 Spectrophotometer (Thermo Scientific). The quality of the total DNAs was evaluated with optical density (OD) 260/280 nm and 260/230 nm ratios. Extractions with OD ratios less than 1.4 and DNA quantity less than 25 ng μl–1 were repeated. In addition soil DNA extracts were PCR-amplified with primer pair ITS1-ITS4 [39] to confirm the absence of DNA polymerase inhibitors. Extracts with positive ITS1-ITS4 amplification products (from 500 bp to 1000 bp) were considered suitable for selleck inhibitor quantitative Oxymatrine PCR (qPCR) assays. Purified DNAs were stored at −80°C until processed. Primer and probe selection ITS1-5.8 S-ITS2 rDNA Nutlin-3a nmr sequences of T. magnatum and other truffle

species were retrieved from GenBank database (http://​www.​ncbi.​nlm.​nih.​gov/​; date of accession: June, 2008) and aligned with Multalign [40] to identify species-specific domains for primer and probe selection. Oligonucleotide design was carried out with Primer3 software (http://​frodo.​wi.​mit.​edu/​primer3/​) [41] with the following parameters: amplicon size 90–110, primer size 18–22 bp (opt. 20 bp), melting temperature 58-62°C (opt. 60°C), GC content 40-60% (opt. 50%), Max Self Complementarity = 5. Secondary structures and dimer formation were verified using Oligo Analyzer 1.0.3 software (Freeware, Teemu Kuulasmaa, Finland) and specificity was firstly evaluated in silico using BLASTN algorithm (http://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi). A primer pair and the respective probe was selected for both the ITS1 and the ITS2 region (Table 2) and their specificity was then confirmed with qualitative PCR against genomic DNA of different mycorrhizal, saprobic and pathogenic fungi (Table 3). The specificity of the oligonucleotides selected as probes was tested in PCR reactions using their opposite primers (TmgITS1rev with TmgITS1prob and TmgITS2for with TmgITS2prob).

Comments are closed.