Univariate analysis showed that significantly higher

urin

Univariate analysis showed that significantly higher

urinary protein excretion rate but less severe glomerular sclerosis and tubularinterstitial fibrosis were observed in the lower GalNAc exposure group. Multivariate regression analysis demonstrated that adjusted by age and gender, the GalNAc exposure rate more than 0.4 was a risk factor of glomerular sclerosis and tubularinterstitial fibrosis, OR*(95% CI) were 2.76 (1.19–6.37) and 2.49 (1.18–5.25), respectively. Immunoglobulin A nephropathy patients with lower proteinuria had higher GalNAc exposure rates. The GalNAc exposure rate more than 0.4 was a risk factor of severe chronic renal tissue change. Immunoglobulin A nephropathy (IgAN) is the most common glomerulonephritis in the Proton pump modulator world. It was characterized Smoothened Agonist by the mesangial deposition of polymeric IgA1 along with other immunoglobulins and complements, which could induce mesangial cell proliferation and extracellular matrix expansion.[1, 2] Proteiniuria, hypertension, glomerular sclerosis, tubular atrophy and interstitial fibrosis were recognized with poor prognosis.[3-6] It is well accepted that the glycosylation defect of serum IgA1 molecules play an important role

in the pathogenesis of IgAN.[7-10] Human serum IgA1 is one of the most exceptional human serum immunoglobulins, which is due to O-linked oligosaccharides in its hinge region besides the two N-linked carbohydrate chains in its structure.[11] N-acetylgalactosamine linked to the serine or threonine is the basic structure of O-glycans, and then it was expanded by galactose or sialic acid. Many (-)-p-Bromotetramisole Oxalate studies have suggested that glycosylation

deficiency of IgA1 molecules, usually with a reduced content of galactose (Gal) and sialic acid (SA) but increased exposing of GalNAc, was one of the clinical features of IgAN.[12-14] Immunoglobulin A nephropathy was variable in clinical and histological manifestations. It is unclear whether there is any association between the GalNAc exposure and the clinical manifestation or pathological change. Our previous work first found that aberrantly glycosylated serum IgA1 of patients with IgAN was associated with renal pathological phenotypes and the altered glycosylation of IgA1 existed only in the IgA1-containing macromolecules. The glycans deficiency of IgA1 molecules in sera from patients with severe renal pathological damage were more prevalent than those found in the mild type.[15, 16] The renal survival rate was significantly lower in patients with more severe sialic acid deficiency and the lower alpha 2, 6 sialic acid level of IgA1 might be a predictor for poor prognosis in patients with IgAN.[17] The recently published Oxford Classification of IgAN identified four key pathologic consequences of IgA deposition that independently determine the risk of developing progressive renal disease: mesangial hypercellularity (M), endocapillary proliferation (E), segmental glomerulosclerosis (S), and tubulointerstitial scarring (T).

Hence, as CD1d traffics steadily through the cell, an immune syna

Hence, as CD1d traffics steadily through the cell, an immune synapse containing saturated-tail, hydrophobic antigen is more likely to endure, and sustain the signalling required for a Th1 response. Using inducible knockout CD1d mice, Bai et al.[79] demonstrated that Th1-type antigen presentation

requires dendritic cell (DC) -expressed CD1d, whereas Th2-type antigen, loaded into CD1d at the cell surface, is presented by a range of non-IL-12-producing APC. This distinction is important as DC-derived IL-12 induces production of IFN-γ by NK cells, explaining further how a Th1 cytokine bias is achieved. Several studies report the influence of SCH 900776 order cell-surface receptors on iNKT cells on their cytokine response. CD40, CD4, programmed death receptor PD-1 and the A2aR adenosine receptor can all influence cytokine polarization.[80-83] The iNKT response to danger is shaped by many factors in addition to antigen. Responses are programmed by the starting activation state of iNKT cells, and by the activity of APC. Activation of APC leads to alterations in antigen presentation, including changes in CD1d expression and changes to the repertoire of self-antigens associated with CD1d. The APC-derived cytokines also mediate activation of iNKT cells, sometimes independently of the CD1d–ligand–TCR interaction. In many infectious contexts,

it is APC-derived cytokine in concert with self-antigen–CD1d signalling that activates iNKT cells (summarized in Fig. 2). The recent history of an iNKT cell dictates its responsiveness. αGalCer stimulation leads to temporary anergy,[84] which has impaired the GSK126 mw development of αGalCer-based therapeutic protocols. Similarly, encounter with a range of bacteria, or the bacterial products lipopolysaccharide (LPS) and flagellin, anergizes iNKT cells.[85] Neutrophils, themselves activated by iNKT cells, can also suppress iNKT-cell activity, Dimethyl sulfoxide limiting an iNKT-cell response.[86] The iNKT cells that have recently encountered self-antigen have limited cytokine-secreting

activity, and lowered responsiveness to foreign antigen (αGalCer).[87] Such mechanisms may well restrain potentially harmful iNKT-cell activity, though recognition of CD1d-presented self-antigen also primes iNKT cells for subsequent activation by IL-12 and IL-18.[87] The APC expression of CD1d is responsive to bacterial infection, which in turn affects iNKT activation. Infection of APC with Listeria monocytogenes leads to IFN-β-mediated up-regulation of CD1d (not just its redistribution to the cell surface),[88] and in an M. tuberculosis infection model, IFN-γ in combination with bacterial products Pam3Cys [a Toll-like receptor 2 (TLR2) agonist] or LPS (a TLR4 agonist) was sufficient to up-regulate CD1d on macrophages.[89] In vitro exposure of DC to Salmonella typhimurium or Escherichia coli-derived LPS has also been found to increase CD1d levels.

Many other endogenous glycosphingolipids (GSL) have been extracte

Many other endogenous glycosphingolipids (GSL) have been extracted from CD1d, with fluorescent labelling of glycan headgroups and HPLC used to profile the eluted GSL.[37] Although GSL are important for iNKT-cell activation, as shown by work with a GSL synthesis inhibitor,[30] iNKT-cell antigens are not exclusively GSL. CD1d has been found associated with glycosylphosphatidylinositol,[38] and engineered forms of CD1d (protease-cleavable or tail-less, secreted CD1d) have been used to extract endogenous BGB324 datasheet CD1d-associated non-GSL species.[39, 40] Secreted CD1d presents over 150 species, though only lysophosphatidylcholine was subsequently shown to be stimulatory.[41] It remains

possible that these molecules activate type 2 NKT cells. By transfecting GSL-deficient cell lines with CD1d and characterizing the iNKT stimulatory properties of cell extracts, and confirming their results with sphingolipid-specific hydrolases, which

left the antigenic activity of their extracts unaffected, Pei et al.[42] confirmed that endogenous iNKT-cell antigens need not be GSL. Lipids isolated from thymocytes include ether-bonded mono-alkyl glycerophosphates, which are able to activate iNKT thymocytes in a CD1d-dependent manner. Mice deficient in ether-bonded lipids are partially deficient in their ability to select iNKT cells, so these molecules form an essential part of the endogenous iNKT-cell antigen repertoire.[43] https://www.selleckchem.com/products/LY294002.html CD1d is also capable of binding long hydrophobic peptides.[44, 45] Despite its potency as an iNKT antigen, αGalCer-based therapy has not become established in any disease indication. There is now strong interest in developing agonist ligands to bias iNKT-cell responses towards a Th1 or Th2 cytokine profile,[9] or to create a reduced response,[46, 47] allowing fine control of immune activation. The iNKT-cell TCR functions as a pattern-recognition receptor for both pathogens and altered levels of self-antigen. Structures of the iNKT TCR in complex with ligand-CD1d illuminate how it recognizes diverse

antigens. The footprint of the iNKT TCR on CD1d runs parallel to its binding cleft, unlike the diagonal footprint on MHC characterized for many DNA ligase peptide–MHC-specific TCR, and covers a small surface area.[48] Just as conventional TCRs have a germline-encoded predisposition to recognize peptide–MHC,[49] so the iNKT TCR uses conserved sequence to recognize antigen–CD1d.[50] CD1d–ligand recognition is largely mediated by complementarity-determining regions (CDR) 3α, 1α and 2β, and structures of various human and mouse iNKT TCR alone[51, 52] and in TCR–antigen–CD1d ternary complexes[53-56] show how CD1d–ligand recognition by the iNKT TCR is highly conserved. CDR2β forms polar interactions with CD1d, CDR1α interacts exclusively with ligand, and CDR3α contacts both.[48, 53] Mouse Vβ8.

1 and 18 5% positive cells respectively (Fig 5A and B) Furtherm

1 and 18.5% positive cells respectively (Fig. 5A and B). Furthermore, 23.3% of the memory B cells expressed the type I receptor activin receptor-like kinase (Alk) 2. In naive B cells, none of the three type I receptors were detected. Since a hetero-oligomeric receptor complex consisting of type I and type II receptors are needed to bind BMP and induce signaling, the functional effects observed in naive B cells were surprising, unless the stimulation conditions used (CD40L/IL-21) could upregulate BMP receptor expression. To test this hypothesis, we cultured

mononuclear cells from peripheral blood in the presence of CD40L/IL-21 for 24 h and then stained with anti-BMP receptor Abs, anti-CD19 or anti-CD20 Abs. https://www.selleckchem.com/products/BEZ235.html Interestingly, stimulation with CD40L/IL-21 doubled the MFI values of Alk-2 expression in CD19+ B cells, whereas only minor differences were seen for the other receptors (Fig. 5C). Specific analysis of naive and memory B cells by anti-CD27 Ab was not possible in stimulated mononuclear cells as CD40L/IL-21-induced downregulation of CD27 (Supporting CP868596 Information Fig. 5) as shown previously 39. Stimulation of FACS-sorted naive B cells for 48 h confirmed that Alk-2 expression could be induced in naive

B cells (Fig. 5D). Taken together, naive and memory B cells expressed the type II receptor ACTR-IIB and the BMP type I receptor Alk-2 after stimulation with CD40L/IL-21. To investigate how the various BMPs mediate their functional effects in naive and memory B cells, we next investigated BMP-induced signaling. We stimulated peripheral blood CD19+ B cells with BMP-6 for various periods of time and examined activation of Smad1/5/8. BMP-6 induced phosphorylation of Smad1/5/8 after 30 min and reached maximum at 3 h of stimulation (Fig. 6A). The phosphorylation was still enhanced after 24 h. Furthermore, we tested the effects of BMP-2, -4, -6 Tau-protein kinase and -7, and all BMPs induced activation of Smad1/5 (Fig. 6B). The BMPs also induced phosphorylation of pSmad1/5 in the presence of CD40L/IL-21 (Fig. 6B), although weaker as CD40L/IL-21 reduced the phosphorylation level of Smad1/5/8 (Supporting Information

Fig. 6). As BMP-6 potently suppressed plasma cell differentiation and Ig production, we used this BMP to investigate the expression of key regulators of plasma cell differentiation, in addition to the BMP target genes ID1, ID2 and ID3. Real-time RT-PCR was performed on IgD-depleted memory B cells cultured for 2 or 4 days in the presence of CD40L/IL-21, with or without BMP-6. The expression of ID1 was increased 7.2- and 4.5-fold by BMP-6 after 2 and 4 days respectively (Fig. 7A). ID3 expression was increased 3.4-fold at day 4 in the presence of BMP-6, whereas ID2 was increased less than 2-fold. Furthermore, CD40L/IL-21 significantly increased the expression of IRF4, PRDM1 (gene encoding Blimp-1) and XBP1 at day 4 compared with day 2 (Fig. 7B).

There were no significant differences between the two target haem

There were no significant differences between the two target haemoglobin groups in the primary end-point (HR 0.78, 95% CI 0.53–1.14, P = 0.20), all-cause mortality Inhibitor Library in vivo (HR 0.66, 95% CI 0.38–1.15, P = 0.14) and cardiovascular mortality (HR 0.74, 95% CI 0.33–1.70,

P = 0.48). In spite of having comparable haemoglobin target ranges, the results of the CREATE trial contrasted with those of the Normal Haematocrit Cardiac and CHOIR trials. The CREATE study population was relatively younger with less cardiovascular comorbidities, which could have partly explained the apparent disparity in the results. The median doses of erythropoietin administered in the CREATE trial were also considerably lower (5000 and 2000 IU/week in the normal and subnormal haemoglobin groups, respectively). These findings suggest that a high haemoglobin target per se may not have been directly responsible for the poorer observed outcomes if high doses of ESAs were avoided. The Trial to Reduce Cardiovascular Events with Aranesp Therapy study is the largest anaemia trial in CKD patients.10 In this trial, BIBW2992 molecular weight 4038 pre-dialysis patients with type 2 diabetes mellitus were randomized to darbepoetin to achieve a haemoglobin level of approximately 130 g/L or placebo. Darbepoetin was allowed in the placebo group

only as a rescue therapy when the haemoglobin level was less than 90 g/L. There were two primary end-points: (i) composite outcomes of death and non-fatal cardiovascular event; and (ii) composite outcomes of death and end-stage renal disease. There were no statistically significant differences between the two groups in death or non-fatal cardiovascular event (HR 1.05, 95% CI 0.94–1.17, P = 0.41) and death or end-stage renal disease (HR 1.06, 0.95–1.19, P = 0.29). Also, the risks of all-cause mortality (HR 1.05, 95% CI 0.92–1.21, P = 0.48) and cardiovascular mortality (HR 1.05, 95% CI 0.88–1.25, P = 0.61) were comparable in both groups. Darbepoetin increased the risk of stroke compared with placebo (total 154 events, HR 1.92, 95% CI 1.38–2.68, P < 0.001). In contrast, the CHOIR

study did not show increased risk of Mirabegron stroke in the high haemoglobin group. Age and prior history of stroke at baseline were similar in both the trials. However, the risk of developing stroke in the TREAT trial was more than double that in the CHOIR trial (3.8% vs 1.7%). All patients in the TREAT trial were diabetic, whereas nearly half of the CHOIR study population was diabetic. Because diabetes is a risk factor for stroke, this disparity in the proportion of diabetic patients may have explained disparity in the rates of stroke between the two trials. However, it does not explain the increased risk of stroke observed in the darbepoetin group. The TREAT study was a placebo-controlled double-blinded trial. The median doses of darbepoetin in the darbepoetin and placebo groups were 176 and 0 µg/month, respectively.

On June 1–2, 2009, NIAID/DAIT sponsored a workshop entitled Mast

On June 1–2, 2009, NIAID/DAIT sponsored a workshop entitled Mast Cells in Innate and Adaptive Immunity. Workshop participants included international experts in mast cell biology who, in six workshop sessions, addressed key issues on signaling and activation, mediators of innate immune responses, comparisons of animal model and human studies, host defense Vadimezan in vitro against pathogens, adjuvant properties of mast cell activators and products, and recommendations for future research. Although mast cells were first described well over a century ago (as reviewed in 4), the main functions of mast cells other than as effectors in allergic diseases still remain unclear. Dean Metcalfe (Bethesda, MD) noted that

a large body of knowledge generated about mast cells in the context of allergic diseases has, however, also contributed to an understanding of the roles of mast cells in inflammation and host defense. The overall importance of mast cells as sentinels is emphasized by the observation that the size of the mast cell pool in mammals is roughly equivalent to the number of cells in the spleen. As mediators of innate host defense, mast cells express most TLR as well as Nod-like

receptors (NLR), and they not only recognize bacteria, but phagocytose and kill them directly. Dr. Metcalfe also observed that relatively Crenolanib datasheet little is known about their role in viral infections, although in the context of HIV infection, mast cells appear to represent a significant viral reservoir 5. old Thus, mast cell activation in AIDS patients may result in the same problems previously observed after the activation of HIV-infected T cells, i.e. the release of virus. Dr. Metcalfe listed the major challenges hampering the field such as the difficulty in culturing human mast cells, the need for more robust animal models and a better understanding of their relevance to human diseases, and the identification of pharmaceutical agents that target mast cells. The limited understanding

of mast cell function in the defense against infectious agents extends to molecular events. Juan Rivera (Bethesda, MD) observed that signals resulting from cross-linking of high-affinity IgE receptors (FcεRI) on mast cells have been studied extensively in the context of allergy, but little is known about the consequences of engaging other immune and nonimmune mast cell receptors. Mast cell responses to stimulation are very heterogeneous, depending on the types of receptors that are triggered and the sets of downstream kinases that are activated. Receptor engagement on mast cells can trigger either positive (stimulatory e.g. FcεRI) or negative (inhibitory) pathways. Dr. Rivera’s laboratory has uncovered evidence that some of these signals trigger irreversible epigenetic changes in long-lived mast cells rendering them permanently hyper-responsive 6, 7.

In the present study, we combined multiparametric analysis of cyt

In the present study, we combined multiparametric analysis of cytokine production profiles and TCR clonotypic signatures to study the functional diversity of circulating T cells and skin-infiltrating effector T cells at the clonal level. In doing so, we found that T cells bearing canonical Th17 signatures, such as IL-17A, IL-22, CCR6 and CD161 expression, can in fact be assigned to phenotypically and functionally heterogeneous subsets. Through direct ex vivo analysis of circulating T cells from healthy controls we confirmed that the cell surface marker CD161, which was recently shown to be expressed on Th17 precursor

cells, is also expressed on a significant proportion of mature IL-17A-producing CD4+ T cells 10. Ramirez et al. studied CD161 expression on in vitro generated IL-17- and IL-22-secreting CD4+ T cells and observed SAHA HDAC cost expression selleck kinase inhibitor confined to IL-17-secreting CD4+ T cells 30. In line with this in vitro study, we observed that ex vivo CD161 expression is significantly higher on IL-17A-secreting

CD4+ T cells, either co-expressing IL-22 or not, as compared with both IL-17A−IL-22+ and IL-17A−IL-22− CD4+ T cells. CD161 expression is therefore more strongly associated with IL-17A-secretion than with IL-22-secretion. CCR6 expression is another typical feature of the Th17 subset 9. We therefore investigated CCR6 expression on IL-17A-secreting CD4+ T cells in relation with IL-22 expression. We found that CCR6 was expressed on IL-17A-secreting CD4+ T cells independently of IL-22 co-secretion. Moreover, the observation that CCR6 and CD161 surface expression on IL-17A-secreting CD4+ T cells are not associated indicates that the two homing receptors can act independently and possibly target different tissues or organs. We furthermore

observed that IL-22-secreting CD4+ T cells secrete IL-2 and TNF-α more frequently than IL-17A+IL-22− CD4+ T cells, thus demonstrating that a high degree of polyfunctionality is a feature associated with IL-22-, but not with IL-17A-secretion. Finally, we observed that IFN-γ and IL-17A/IL-22 secretion are virtually mutually exclusive at the single-cell level. This most likely reflects the fact that, like in mice 31, IFN-γ is also a negative regulator of IL-17A-secretion in humans. Volpe this website et al. previously showed a strong correlation between IL-22 and IFN-γ production in supernatants from in vitro differentiated polyclonal T-cell cultures 32. However, while certain polarizing conditions can indeed drive bulk CD4+ populations to produce both IL-22 and IFN-γ, it is unclear whether both cytokines are produced by the same cell. In summary, we conclude from our results that IL-17A−IL-22+ cells show elevated polyfunctionality, IL-17A+IL-22− cells express CCR6 and CD161, and IL-17+ IL-22+ cells share both features.


“We present two cases of atypical meningioma WHO grade II


“We present two cases of atypical meningioma WHO grade II with a history of multiple local recurrences and late pulmonary metastases. Comparative cytogenetic analyses on 1p and 22q confirmed clonal origin of the primary intracranial meningiomas and the pulmonary metastases in both cases. These cases illustrate the importance of close neuroradiological follow-up to detect tumor recurrence in patients with

atypical meningiomas WHO grade II even with clinically stable disease PS341 and should sensitize clinicians to late extracranial metastases of these tumors, especially to the lung. In an effort to elucidate common clinical features of metastatic meningiomas, especially to the lung, the literature

was RGFP966 ic50 reviewed from 1995 to 2014, identifying a total of 45 published cases. “
“M. Thangarajh and D. H. Gutmann (2012) Neuropathology and Applied Neurobiology38, 241–253 Low-grade gliomas as neurodevelopmental disorders: insights from mouse models of neurofibromatosis-1 Over the past few years, the traditional view of brain tumorigenesis has been revolutionized by advances in genomic medicine, molecular biology, stem cell biology and genetically engineered small-animal modelling. We now appreciate that paediatric brain tumours arise following specific genetic mutations in specialized groups of progenitor cells in concert with permissive changes in the local tumour microenvironment. This interplay between preneoplastic/neoplastic cells and non-neoplastic stromal cells is nicely illustrated by the neurofibromatosis type 1-inherited cancer syndrome, in which affected children develop

low-grade astrocytic gliomas. In this review, we will use neurofibromatosis type 1 as a model system to highlight the critical role of growth control pathways, non-neoplastic cellular elements and brain region-specific properties in the development of childhood gliomas. The insights derived from examining each of these contributing factors will be instructive in the design of new therapies for gliomas in the paediatric population. “
“There is a great deal of evidence suggesting an important role for systemic inflammation check details in the pathogenesis of Alzheimer’s disease. The role of systemic inflammation, and indeed inflammation in general, is still largely considered to be as a contributor to the disease process rather than of aetiological importance although there is emerging evidence to suggest that its role may predate the deposition of amyloid. Therapies aimed at reducing inflammation in individuals with mild cognitive impairment and Alzheimer’s disease have been disappointing and have largely focused on the need to ameliorate central inflammation with little attention to the importance of dampening down systemic inflammation.

Phylogenetic analysis of VLR genes indicates that the VLRC sequen

Phylogenetic analysis of VLR genes indicates that the VLRC sequence is more closely related to the VLRA than the VLRB sequence. This suggests that, like VLRA+ LLCs, VLRC+ LLCs may be classified as T cell-like LLCs. These observations indicate that jawless vertebrates have developed an adaptive immune system based on VLR+ LLC subsets that are similar to the T and B cells of jawed vertebrates. Recently, thymus-like epithelial structures termed “thymoids” were identified

in the filaments and neighboring secondary lamellae of lamprey larvae [33]. The forkhead box N1 gene, which is a molecular Doxorubicin marker of the thymopoietic microenvironment in jawed vertebrates, is expressed in thymoids. Interestingly, unsuccessfully rearranged VLRA sequences are found only in thymoids, whereas the sequences obtained from blood are all successful. These findings seem to indicate that the thymoids of jawless vertebrates are the functional analogue of the thymi of jawed vertebrates. The evolutionary precursors of TCR and BCR genes, known as the TCR-like and agnathan-paired receptor resembling antigen GPCR Compound Library receptor genes [34], [35], were found by transcriptome analysis of LLCs in jawless vertebrates. These receptors are composed of one or two immunoglobulin domains that have weak similarity to those of TCRs and BCRs. It has been proposed that an ancestor of the VLR gene arose from

a GPIbα-like gene that is conserved in all vertebrates [19]. The genomic structure and characteristic insert in the LRRCT domain of the GPIbα gene is similar to those found in VLR genes. These findings indicate that ancestral VLR and TCR/BCR genes were present in a common ancestor of jawless and jawed vertebrates (Fig. 4). Moreover, the gene expression profiles of each LLC subset Nutlin-3 nmr indicate that the ancestral VLRA/VLRC/T and VLRB/B cell lineages also developed in a common ancestor. After

the jawed and jawless vertebrate lineages diverged, the ancestral TCR/BCR and VLR genes became antigen receptors in the jawed and jawless vertebrates, respectively. Following development of these rearranging antigen receptors, further diversification at the genetic and cellular levels occurred independently in each vertebrate lineage. Jawed and jawless vertebrates ultimately developed similar adaptive immune systems. The TLR repertoire is unique to each animal (Table 1). TLR1/TLR2 and TLR6/TLR2 complexes recognize triacyl and diacyl lipoproteins, respectively [36]. Orphan TLR14 and TLR15 molecules are members of the TLR2 subfamily, which also includes TLR1, TLR2 and TLR6 [37], [38]. TLR3 binds viral dsRNA in endolysosomes, whereas TLR22 is conserved in aquatic animals and recognizes dsRNA on cell surfaces ([29]–[42]). TLR4 recognizes bacterial lipopolysaccharide together with myeloid differentiation factor 2 on cell surfaces [43]. TLR5 recognizes flagellin in flagellated bacteria. TLR7 and TLR8 recognize ssRNAs from RNA viruses [44].

[85-88] Other analogues of αGalCer that are able to skew conventi

[85-88] Other analogues of αGalCer that are able to skew conventional CD4+ T-cell responses more towards either a Th1- or a Th2-like profile will be introduced into clinical studies. In the near RGFP966 in vitro future, it may be possible to differentially activate or inhibit type I and type II NKT cells for the development of novel immunotherapeutic protocols in the treatment

and prevention of autoimmune diseases. Mechanisms by which NKT cell subsets modulate immunity generally follow events and their interactions with other immune cells after activation by their respective lipid antigens, e.g. αGalCer and sulphatide for type I and type II NKT cell subsets, respectively. As DCs play a crucial role not only in the activation of NKT cells but also may be central to their role in the regulation of immune responses, we will first consider NKT–DC interactions and their control of NKT cell-mediated modulation of

autoimmune disease. The advent of intravital imaging now enables the cell dynamics and function of T-cell–DC interactions to be investigated in vivo. Considerable new information provided by the application of 2P microscopy has been reported about the cellular and molecular dynamics of conventional CD4+ and CD8+ T-cell–DC interactions in vivo.[51, 54] While NKT–DC interactions are also central to the regulation of many immune responses Enzalutamide research buy and diseases, less is currently known Cobimetinib price about the dynamics of movement, recirculation and interaction between NKT cells and DCs in vivo.[51, 54] Some recent observations made using in vivo imaging of NKT–DC interactions are presented in Table 6. A key finding is that bidirectional NKT

cell–DC interactions can elicit and amplify innate and adaptive immune responses. Hence, intravital imaging has identified a central role for NKT cells in the context of other immune cells during various immune responses.[51, 54] This further underscores the importance of learning more about different NKT cell subsets and developing more experimental approaches to track these NKT cell subsets by in vivo imaging. In such studies, it is essential to monitor before and after antigen stimulation: (i) the tracking patterns of type I and type II NKT cells from blood into peripheral tissues (e.g. lymph nodes, spleen, liver), (ii) the differences in the number, time and stability of encounters of these NKT subsets with DCs, (iii) the time and sites of migration of these subsets after DC interaction, and (iv) these various parameters in environments of health (e.g. normal disease-free mouse strains) or disease (e.g. mouse strains that develop different autoimmune diseases, as described below).