schenckii as was observed for pSD2G-RNAi1 and pSD2G-RNAi2 transformants. One of the most important inhibitor GW-572016 cost of HSP90 is geldanamycin. This compound was used to inhibit HSP90 in C. albicans where it induced yeast cells to undergo a switch to filamentous growth [48]. In S. schenckii, at a concentration of 10 μm, this compound induced the development of conidia
into an abnormal mycelial morphology very similar to that observed in the pSD2G-RNAi transformants, at conditions suitable for the development of the yeast morphology. This is in accordance with the observation that SSCMK1 might be needed for the correct functioning of HSP90 and thermotolerance in the S. schenckii. Further testing using the yeast two-hybrid assay will help us identify if calcineurin is also interacting with HSP90 in S. schenckii, as has been reported in other fungi such as C. neoformans and C. albicans [[53–55]]. If this is so, we could postulate that CaMK1 regulates HSP90, and HSP90 in turn regulates CaMK1 by its effects on calcineurin and that these interactions are needed for thermotolerance in this fungus. A possible model for the interaction of HSP90 and SSCMK1 is included in Figure 7. In this figure we propose that SSCMK1 binds to HSP90 at its C terminal and this activates HSP90 and the release of effector proteins that bind YAP-TEAD Inhibitor 1 supplier to its N terminal domain, one of which can be calcineurin that can dephosphorylate the
SSCMK1 and inhibit its activity. It can also release other kinases that are also effectors of fungal dimorphism. In this figure the interactions regarding calcineurin are speculative although the interaction has been reported in C. neoformans, this protein has not been identified in S. schenckii [53] Figure 7 Possible interaction of HSP90 and SSCMK1. Evidence from RNAi inhibition of SSCMK1, HSP90 inhibition with GdA and yeast two-hybrid assay presented in this work suggests that SSCMK1 could affect fungal thermotolerance by its interaction with SSHSP90. SSCMK1 was found to interact with the C terminal domain of SSHSP90,
where effectors of this heat shock protein interact. HSP90 has been identified as interacting with phosphatase, calcineurin and other enough kinases in many other fungal systems. The interaction of HSP90 with these proteins involves the N terminal domain. The interaction of HSP90 with calcineurin would in turn modulate the activity of SSCMK1. The presence and interaction of calcineurin in S. schenckii is at the moment expeculative because this protein has not been described in this fungus. Conclusions The present study LY2228820 manufacturer provides new evidence regarding the role of SSCMK1 in the development of the yeast form of S. schenckii. The knockdown of the sscmk1 gene expression using RNAi inhibited the growth of the yeast form of the fungus at 35°C but had no effect on mycelial growth observed at 25°C.